3,996 research outputs found

    'Xenia', a new pear cultivar from Moldava, first results in the Netherlands

    Get PDF
    The pear cultivar `Xenia¿ (synonym `Noiabriskaia¿) from Moldova is a selection from a cross between `Triomphe de Vienne¿ and `Nicolai Krier¿. In The Netherlands, `Xenia¿ has been tested since 2001. So far, trees have given early and high yields and required little thinning. Up to now, a very low to moderate susceptibility to scab (Venturia pirinia) and a very low susceptibility to fruit tree canker (Nectria galligena) have been observed. The trees showed a medium vigour and there was a low tendency to biennial bearing. With the relatively young trees, the average fruit size of `Xenia¿ fruits at full crop was 250-300 g. The harvest window was wide. Fruits of `Xenia¿ had a green ground colour at harvest and were moderately bronzed. `Xenia¿ had a spherical pear shape. The fruits had a strong fruit skin. The firmness was higher than that of `Conference¿. The juiciness varied from juicy to very juicy, depending on the maturity stage. `Xenia¿ had a good eating quality: fresh, slightly aromatic with a typical aroma. The storability of the fruits was very good and the shelf life of `Xenia¿ proved to be much better than of `Conference¿. Summarizing, the first results show a good potential for commercial fruit growing

    Two Galaxy Clusters: A3565 and A3560

    Get PDF
    We report 102 new redshifts and magnitudes for a sample of galaxies to RF ~ 15.5 mag in a 2.17 deg x 2.17 deg region centered on the galaxy IC 4296, the most luminous member of the A3565 cluster. Up to the limiting magnitude we find 29 cluster members, and measure a velocity dispersion of 228 km/s. The estimated total mass for this system is ~ 3.0 x h**-1 10**13 Msun (where h = H0/100 km/s/Mpc), and its dynamical properties are quite typical of poor clusters presenting X-ray emission. We also find that galaxies with absorption lines are more concentrated towards the center of the cluster, while systems with emission lines are mainly located in the outer parts. The small velocity dispersion of the cluster, coupled to the known presence of an interacting pair of galaxies, and the large extent of the brightest cluster galaxy, could indicate that galaxy formation through mergers may still be underway in this system. The surveyed region also contains galaxies belonging to the Shapley Concentration cluster A3560. Within 30 arc min of the cluster center, we detect 32 galaxies, for which we measure a velocity dispersion of 588 km/s and a mass of ~2 x h**-1 10**14 Msun. However, because our sample is restricted to galaxies brighter than M*, these values should be considered only as rough estimates.Comment: 33 pages, including 6 tables and 9 postscript figures. Uses AAS Latex macros. Postscript file and ASCII versions of Tables 4 and 6 are available at http://www.dan.on.br/other_surveys/a3565.html. Scheduled for September 1999 issue of The Astronomical Journa

    Mariculture as a means to add value to the east coast rock lobster Panulirus homarus rubellus subsistence fishery : a physiological approach to define transport and growout protocols for wild caught juveniles

    Get PDF
    In a context of declining capture fisheries and public pressure for greater access to marine resources, marine aquaculture is receiving increasing interest from the South African government as a means to increase the diversity of economic activities in coastal regions, thereby providing employment and reducing poverty. The east coast rock lobster Panulirus homarus rubellus is currently harvested by subsistence fisherman along the former Transkei coastline of south-east South Africa and presents a possible opportunity for ongrowing wild juvenile lobsters in culture facilities. Lack of compliance coupled with poor enforcement of the minimum size limit (65 mm carapace length) has resulted in the ongoing harvest of undersize size lobsters by subsistence fishers. Generally, fishers either consume these undersize lobsters or sell them to tourists for low prices. In line with international trends in rock lobster aquaculture, interest has subsequently arisen in the possibilities of ongrowing these undersize lobsters as a means of adding value to the P. h rubellus resource for subsistence fishers. The aim of this physiological study was to assess the biological feasibility of harvesting, transporting and culturing wild caught juvenile lobsters, thereby provide empirical data to inform the development of suitable transport and culture protocols. The experimental objectives were to asses the effect of temperature on growth and survival of P. h. rubellus, as well as the effects of a suite of extrinsic and intrinsic factors on ammonia excretion and oxygen consumption. Juvenile lobsters were collected by hand from near-shore reefs (2-15 m depth) off Mdumbi in the former Transkei, Eastern Cape Province and transported by road (7 hours) to the Port Alfred Marine Research Laboratory where they were held in a recirculating culture system. The effect of temperature over a range of 9.7 °C (18.9±0.7 to 28.6±1.5 °C) on the growth and survival of juvenile P. h. rubellus fed a diet of fresh mussel flesh was investigated. Specific growth rate (SGR) was significantly different between temperatures (p = 0.01), with the highest values recorded for the 24 °C and 28 °C treatments. There was no significant difference in moult increment (MI) between temperatures, however, intermoult period (IMP) differed significantly between temperatures (p = 0.0015) with mean IMP lowest at 24 °C, although not significantly different from the means of the 26 °C and 28 °C treatments. IMP was highest at 19 °C and 21 °C. Apparent feed intake was significantly different between treatments (p < 0.0001) and exhibited a strong positive correlation with increasing temperature. Food conversion ratio (FCR) differed significantly between temperatures (p = 0.02) with 24 °C exhibiting the most efficient FCR. The results for growth rate and food conversion efficiency suggested that 24 °C is optimal for the growout of juvenile P. h. rubellus. In the second study, the effect of body weight, emersion, daily rhythm, feeding and ambient ammonia on the total ammonia nitrogen (TAN) excretion rate was investigated. Body weight (n = 16, range of 16.8 – 322 g) was positively correlated to daytime TAN excretion rate (mg h⁻¹). Re-immersion after one hour emersion in a moist environment was characterized by a significant increase in TAN excretion rate for the first hour compared to pre-immersion levels. The amount of TAN excreted during this period was as expected if basal TAN excretion rates were maintained during emersion. TAN excretion rates returned to pre-emersion levels by the end of the second hour. There was no evidence of a daily rhythm in TAN excretion rate for P. h. rubellus. TAN excretion rates were elevated following feeding. An initial peak in TAN excretion rate after seven hours (7.58 times pre-feeding rate) was followed by a smaller peak after 13 hours (6.69 times pre-feeding rate). TAN excretion rate dropped to levels not significantly different from pre-feeding levels after 23 hours and consistently returned to pre-feeding levels after 42 hours. The TAN excretion rates of lobster exposed for two hours to an ambient TAN concentration of 1.02±0.10 mg l⁻¹ and 2.3± 0.2 mg l⁻¹ were not significantly different from TAN excretion rates recorded at low ambient water TAN prior to exposure. Exposure to an ambient TAN concentration of 4.45±0.78 mg l⁻¹ had a significant effect on the TAN excretion rate, with pronounced ammonia uptake occurring for all animals at this concentration. The third study investigated the effects of body weight, diurnal rhythm, feeding and emersion on lobster oxygen consumption. Body weight was positively correlated to both standard and active oxygen consumption (mg O2 h⁻¹) while body weight was negatively correlated to mass-specific standard oxygen uptake (mg O2 g⁻¹ h⁻¹). Diurnal rhythm exhibited a strong effect on the lobsters oxygen consumption, with average night time values 67% greater than those recorded during the day. This was related to activity driven by intrinsic nocturnal foraging behaviour. Feeding resulted in a classic specific dynamic action (SDA) response, with postprandial oxygen consumption increasing to a peak before decreasing gradually to preprandial levels. Emersion resulted in a significant increase in oxygen consumption, with lobsters rapidly recovering to pre-emersion levels after four hours. Results from these studies suggest that the capture, transport and culture of juvenile P. h. rubellus is biologically feasible. Empirical data generated were used to provide recommendations regarding species optimised transport and culture protocols. A purge time of 48 hours before transport is suggested to ensure that ammonia excretion and oxygen consumption are at basal levels. Furthermore, emersed transport for a period of one hour is characterised by rapid recovery upon re-immersion. In order to prevent the accumulation of stressors, it is suggested that consecutive periods of emersion are interjected with recovery periods (five hours) in water to allow the removal of accumulated ammonia and repayment of the oxygen debt incurred. The recorded ammonia rates indicate that a biological filter size of 4.8 m³ is recommended for 1000 kg of fed lobsters in a culture situation, although this can be reduced considerably if lobsters are being held without feeding (0.72 m³). A flow rate of 112 l kg⁻¹ h⁻¹ is required to meet the metabolic requirements of lobsters. Bottlenecks to the viable commercial culture of P. h. rubellus, and the ability of this practice to provide the socio-economic benefits that were envisioned, are discussed

    1RXS J232953.9+062814: A Dwarf Nova with a 64-minute Orbital Period and a Conspicuous Secondary Star

    Full text link
    We present spectroscopy and time-series photometry of the newly discovered dwarf nova 1RXS J232953.9+062814. Photometry in superoutburst reveals a superhump with a period of 66.06(6) minutes. The low state spectrum shows Balmer and HeI emission on a blue continuum, and in addition shows a rich absorption spectrum of type K4 +- 2. The absorption velocity is modulated sinusoidally at P_orb = 64.176(5) min, with semi-amplitude K = 348(4) km/s. The low-state light curve is double-humped at this period, and phased as expected for ellipsoidal variations. The absorption strength does not vary appreciably around the orbit. The orbital period is shorter than any other cataclysmic variable save for a handful of helium-star systems and V485 Centauri (59 minutes). The secondary is much hotter than main sequence stars of similar mass, but is well-matched by helium-enriched models, indicating that the secondary evolved from a more massive progenitor. A preliminary calculation in which a 1.2 solar-mass star begins mass transfer near the end of H burning matches this system's characteristics remarkably well.Comment: accepted to Astrophysical Journal Letters; 14 pages, 3 eps figures + 1 jpg greyscale figur

    On-line recognition of supernova neutrino bursts in the LVD detector

    Full text link
    In this paper we show the capabilities of the Large Volume Detector (INFN Gran Sasso National Laboratory) to identify a neutrino burst associated to a supernova explosion, in the absence of an "external trigger", e.g., an optical observation. We describe how the detector trigger and event selection have been optimized for this purpose, and we detail the algorithm used for the on-line burst recognition. The on-line sensitivity of the detector is defined and discussed in terms of supernova distance and electron anti-neutrino intensity at the source.Comment: Accepted for pubblication on Astroparticle Physics. 13 pages, 10 figure

    First CNGS events detected by LVD

    Get PDF
    The CERN Neutrino to Gran Sasso (CNGS) project aims to produce a high energy, wide band νμ\nu_{\mu} beam at CERN and send it toward the INFN Gran Sasso National Laboratory (LNGS), 732 km away. Its main goal is the observation of the ντ\nu_{\tau} appearance, through neutrino flavour oscillation. The beam started its operation in August 2006 for about 12 days: a total amount of 7.6 10177.6~10^{17} protons were delivered to the target. The LVD detector, installed in hall A of the LNGS and mainly dedicated to the study of supernova neutrinos, was fully operating during the whole CNGS running time. A total number of 569 events were detected in coincidence with the beam spill time. This is in good agreement with the expected number of events from Montecarlo simulations.Comment: Accepted for publication by the European Physical Journal C ; 7 pages, 11 figure

    Search for low energy neutrinos in correlation with the 8 events observed by the EXPLORER and NAUTILUS detectors in 2001

    Get PDF
    We report on a search for low-energy neutrino (antineutrino) bursts in correlation with the 8 time coincident events observed by the gravitational waves detectors EXPLORER and NAUTILUS (GWD) during the year 2001. The search, conducted with the LVD detector (INFN Gran Sasso National Laboratory, Italy), has considered several neutrino reactions, corresponding to different neutrino species, and a wide range of time intervals around the (GWD) observed events. No evidence for statistically significant correlated signals in LVD has been found. Assuming two different origins for neutrino emission, the cooling of a neutron star from a core-collapse supernova or from coalescing neutron stars and the accretion of shocked matter, and taking into account neutrino oscillations, we derive limits to the total energy emitted in neutrinos and to the amount of accreting mass, respectively.Comment: Accepted for publication in Astronomy and Astrophysic

    Impact of Seabed Resuspension on Oxygen and Nitrogen Dynamics in the Northern Gulf of Mexico: A Numerical Modeling Study

    Get PDF
    Resuspension affects water quality in coastal environments by entraining seabed organic matter into the water column, which can increase remineralization, alter seabed fluxes, decrease water clarity, and affect oxygen and nutrient dynamics. Nearly all numerical models of water column biogeochemistry, however, simplify seabed and bottom boundary layer processes and neglect resuspension. Here we implemented HydroBioSed, a coupled hydrodynamic-sediment transport-biogeochemical model to examine the role of resuspension in regulating oxygen and nitrogen dynamics on timescales of a day to a month. The model was implemented for the northern Gulf of Mexico, where the extent of summertime hypoxia is sensitive to seabed and bottom boundary layer processes. Results indicated that particulate organic matter remineralization in the bottom water column increased by an order of magnitude during resuspension events. This increased sediment oxygen consumption and ammonium production, which were defined as the sum of seabed fluxes of oxygen and ammonium, plus oxygen consumption and ammonium production in the water column due to resuspended organic matter. The increases in remineralization impacted biogeochemical dynamics to a greater extent than resuspension-induced seabed fluxes and oxidation of reduced chemical species. The effect of resuspension on bottom water biogeochemistry increased with particulate organic matter availability, which was modulated by sediment transport patterns. Overall, when averaged over the shelf and on timescales of a month in the numerical model, cycles of erosion and deposition accounted for about two thirds of sediment oxygen consumption and almost all of the sediment ammonium production. In coastal waters, oxygen and nitrogen levels affect the health of fish and other organisms. In the Gulf of Mexico, for example, low-oxygen regions called hypoxic areas or dead zones form in the summertime near the seabed in bottom water . It can be difficult to understand and quantify variations in bottom water oxygen and nitrogen levels, however, because: (1) water quality there is affected by many different physical and biological processes; and (2) observational studies are limited by cost, safety and technological advances. To complement previous observational studies, this paper used a new numerical modeling approach that accounts for many physical and biological processes in the seabed and water. Specifically, we used the model to evaluate how resuspension, especially the entrainment of organic matter from the seabed into the water, affected oxygen and nitrogen levels in the Northern Gulf of Mexico. Model results indicated that resuspension increased the decomposition of organic matter, decreasing oxygen levels and increasing ammonium (a form of nitrogen) levels in bottom water. This effect was largest in regions with abundant seabed organic matter and frequent resuspension. These modeling results can help scientists and environmental managers understand how resuspension affects oxygen and nitrogen levels in bottom waters
    corecore